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We consider the flow of a suspension in a rotating, cylindrical container with inclined 
endwalls and a dividing barrier that blocks any azimuthal motion around the axis. 
A boundary layer of clarified fluid appears when the influence of the Coriolis force 
is counteracted and although a bulk swirling motion is prevented by the meridional 
section, there is still an appreciable azimuthal flow in this thin purified-fluid layer. 
This flux produces an even more intense current on the leading side of the barrier 
(relative to the rotation direction) where the section meets the inclined wall. 

1. Introduction 
The time required for a mixture (in a jar, say) to settle is significantly decreased 

when the container is inclined with respect to gravity. Since the rate of production 
of pure fluid is proportional to the horizontal projection of the surface area between 
suspension and purified fluid, or suspension and sediment, inclination enhances 
settling by increasing this projected area, a phenomenon known as the Boycott effect. 
The fluid motion produced is characterized by a narrow, intense current of purified 
liquid that if heavier than the suspended particles falls along an upward-tilted wall 
(Probstein, Yung & Hicks 1977; Acrivos & Herbolzheimer 1979; and Schneider 
1982). 

Comparison of the bulk separation of mixtures in gravitational and centrifugal 
force fields illustrates many differences. In  the simplest circumstances of gravitational 
settling of dilute mixtures that involves only vertical motion, regions of constant 
volume fraction a and velocity are separated by kinematic shocks (Kynch 1952). By 
contrast, centrifugal settling is also achieved by a squeezing process in addition to 
disengagement across interfaces, the physical variables are genuinely functions of 
time and position, and the velocity vectors have very large azimuthal components 
which affect separation through the conservation of angular momentum (Greenspan 
& Ungarish 1 9 8 5 ~ ) .  Indeed, the vortex motion produced by a redistribution of 
angular momentum can even negate the influence of container geometry which is so 
important to the gravitational Boycott effect. 

The analyses of the Boycott effect cited above show that the heavier pure-fluid 
layer on the upward-inclined wall is thin because of the need to balance buoyancy 
solely by shear forces. In rotating devices, the buoyancy force can be opposed by an 
equally large centrifugal pressure gradient caused by strong differential rotations 
between the zones of mixture and purified fluid. There is no physical necessity for 
a pure-fluid layer to remain thin, which it generally does not according to theoretical 
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prediction (Greenspan & Ungarish 1985a, b ) .  It is concluded that centrifugal settling 
is essentially unaffected by the shape of a container whenever the Coriolis force is 
dominant. Moreover, geometrical enhancement of settling depends then on the extent 
to which this force can be negated. Although the pure-fluid boundary layer is properly 
regarded as a secondary occurrence in the descriptions of the gravitational Boycott 
effect, for centrifugal settling perceptions are reversed. The more appropriate 
generalization seems to be that unless the pure-fluid layer that forms in a rotating 
container remains thin, little or no geometrical enhancement of settling can occur. 
(An experimental test to confirm this prediction is described shortly.) 

Perhaps the most important generalization about centrifugal separation crystal- 
lized from these studies is that while a large centrifugal acceleration is obviously 
important, the effects of the Coriolis force are mostly undesirable. Indeed, enhanced 
centrifugal separation depends on the manner and extent to which the Coriolis force 
is counteracted. The practical solution is to make shear forces important throughout 
the fluid domain by placing the endplates very close to each other in a disk-stack 
arrangement. This is probably an unrecognized design criteria, fortuitously satisfied 
in the quest to make the surface area available for settling as large as possible. Having 
reduced the influence of the Coriolis force in this way, the convective augmentation 
of settling, the Boycott effect, is made possible again (Bark, Johansson & Carlsson 
1984; Amberg et al. 1986). 

Another method to enhance centrifugal settling, proposed by Greenspan & 
Ungarish (19856) is by the insertion of complete meridional barriers. Even a single 
barrier blocks the azimuthal fluid motion and thereby reduces the radial component 
of the Coriolis force. Moreover, the azimuthal pressure gradient sustained by the 
inserted wall causes a radially directed interior flow which could not otherwise exist. 
Vortex production is suppressed and the fluid motion is made to resemble the 
comparable flow in a purely gravitational field. The settling of a mixture in a 
sectioned cylinder with inclined endwalls is found to be enhanced essentially by the 
restoration of a Boycott effect. The analysis of this flow, which has been mostly 
kinematical to date, shows that in analogy with gravitational settling, a bulk mixture 
in which, for example, the fluid is heavier than the suspended particles is divided into 
three main regions separated by kinematic shocks: the clarified fluid where a = 0 for 
r > R ( t ) ;  the suspension where a = ao(t) for R(t) > r > # ( t ) ;  and the sediment where 
a = amax, for S( t )  > r .  As the light particles settle towards the axis of rotation, a layer 
of heavy, clear fluid is formed on the inwardly inclined wall. This fluid is assumed 
to form a thin intense boundary-layer current and is rapidly transported out 
to the completely clarified region at r > R. It is the objective of this work to 
investigate the structure of this and any other purified layer that develops. To this 
end, we study the flow in a specific geometry that manifests the various boundary 
layers that are known to occur in rotating containers. The configuration, shown in 
figure 1, is a conical cylinder with a flat top, sectioned along a diameter by a single 
plate. An inner cylinder concentric with the rotation axis serves as a collection plate 
when required. Both compartments are assumed to be filled initially with a well-mixed 
suspension whose dispersed phase consists of small particles (or droplets) of approxi- 
mately constant radius a, occupying the volume fraction a. 

The dimensionless parameters that characterize the subsequent flow are 
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FIQURE 1. The geometry of the container. The shaded part is the barrier. 

where ,u is the effective viscosity coefficient of the mixture, vc is the kinematic 
viscosity of the fluid, ro is the radius of the cylinder under consideration and 52 is 
the rotational speed of the container. (The averaged flow variables of the continuous 
and dispersed phases are denoted by subscripts C, D whereas an unsubscripted 
variable refers to the bulk mixture.) For purposes of experimental visualization and 
direct comparison with theory, the particles are taken as very slightly lighter than 
the suspending fluid, 0 < E 4 1. (The definition of E here is the negative of that in 
earlier analyses.) 

Parameter /3, a modified Taylor number, measures the ratio of the particle size to 
the thickness of the Ekman layer, or equivalently the Coriolis force to the Stokes drag 
on a particle. Here, it is assumed that /3 4 1. We note that rapid rotation strongly 
affects the drag on a particle for /? moderate or large. In particular, the velocity 
difference between particle (phase) and fluid (phase) is then no longer in the radial 
direction (Herron, Davis & Bretherton 1975; Greenspan 1983). Although this 
produces interesting effects as demonstrated by Schaflinger (1987), these are not 
considered here. 

The Ekman number E, which measures the relative importance of viscous forces 



80 G. Amberg and H .  1’. Greenspan 

(4 (b) 

FIGURE 2. (a) Photographs of settling in a cylindrically symmetric container with the dividing 
barrier. Pictures are taken at 1.0, 1.5, 2.0 min after the start of the experiment. ( b )  The same 
experiment but without the barrier in place. The barrier is viewed from the side and is visible as 
the light horizontal line in the centre of the container. 

compared to the Coriolis acceleration is also assumed small. For the most part, 
however, the mixture is taken as fairly dilute and the volume fraction a, although 
still an O( 1)  variable, is small. 

As a necessary prelude to this theoretical study of centrifugal separation, a very 
qualitative experiment was undertaken to test a t  lcast the main predictions of 
Greenspan & Ungarish (1985 a,  6 ) .  Thus, bulk separation in a completely symmetric 
conical container should evince no thin purified layers of fluid and consequently no 
Boycott effect, if the ratio of the settling to spin-up times, h = I$/e/l, is large. The 
insertion of a meridional barrier should, by nullifying the Coriolis force, produce once 
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FIGURE 3. The flat lid of the container viewed along the axis of rotation during the experiment. 
The barrier is visible as the vertical line. The direction of rotation is such that the top rim moves 
to the left. 

again a clarified boundary layer and augmented convective settling. (Although the 
analysis to support this requires small to moderate values of A ,  this conclusion reflects 
a basic mechanism and seems valid for a much broader range.) 

A container of the shape shown in figure 1 with radius of approximately 10 cm, 
was filled with a mixture of 40 yo UCON 50-HB-5100 lubricant and 60 yo water, the 
viscosity of which is vc = 0.75 cmz/s. A 12 yo volume fraction of polystyrene beads 
with radii in the range 300 pm < 2a < 425 pm constituted the dispersed phase. The 
container was mounted in a horizontal rig and rotated a t  !2 = 150 rad/s. The values 
of the basic non-dimensional parameters are E = 1.67 x lop5, p = 0.015, E = 0.003. 
Before each test the suspension was mixed by rocking the container back and forth 
until the concentration was deemed uniform. Observations and photography were 
made using a synchronized stroboscope. (Only a modest enhancement of settling, of 
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about 20%, is produced in this container; the operating conditions are chosen 
specifically for a study of boundary layers.) 

Figure 2 shows the interface at 1, 1.5 and 2 min after the rotation was started for 
two cases. In  case (b) the barrier has been removed, so that the container is completely 
axisymmetric. The region containing particles appears as the dark area. The interface 
between suspension and clear fluid is seen to be a cone concentric with the container 
but with an apex angle that continually decreases. There are no indications of thin 
clear boundary layers in good agreement with the theory. Since the radical bulk 
motion is small, the velocity of the interface is essentially equal to the slip velocity 
q R  (= qD-qc) ,  which is proportional to r .  This implies that the interface will be a 
collapsing cone, as observed. 

In case (a)  a meridional barrier has been inserted in the container. After 1.5 min 
the interface has the shape of a cone with the same apex angle as the container joined 
to a straight cylindrical front that extends to the baseplate of the container, and 
whose radius decreases with time. On the conical part of the interface, a thin clear 
boundary layer is visible as anticipated by physical arguments (and an analysis that 
is strictly valid for smaller values of h than that of the experiment). 

An unexpected observation is shown in figure 3, a photograph after one minute 
of the region where the baseplate of the cone meets the barrier. The direction of 
rotation is such that the rim is moving to the left in the picture. The flows on the 
two sides of the barrier are not the same and there are indications of intense currents 
of clear fluid during settling in the directions noted. These could originate in the 
peculiar dynamics of homogeneous rotating fluids in containers with no geostrophic 
contours (Greenspan 1968), or they could be a consequence of the settling process, 
as follows. In certain parametric ranges flow in the rotating pure-fluid boundary 
layer, unlike its gravitational counterpart, can have an azimuthal velocity component 
which transports mass to a still thinner and more intense radial jet located in the 
corner where the barrier meets the container wall. This current, emptying into the 
growing reservoir of purified fluid that forms in the evolution to the h a 1  state of 
completely separated components, would produce a flow pattern there that is 
consistent with the photograph. Better visualization techniques will be required to 
substantiate the existence of the corner layer. In any event, it seems not a trivial 
matter to subdue the Coriolis force completely. 

2. The boundary layer on the conical wall 
The theoretical formulation and analysis of bulk settling of a mixture in a rotating 

frame is given by Ishii (1975) and Greenspan & Ungarish (19853). The equations of 
motion are written in terms of the non-dimensional variables obtained by scaling 
velocities by ePQr,,, (recall that B = (pc-pD)/pc > 0), lengths by r,,, the outer radius 
of the container, time by (qYQ)-l and density by pc. The equations of continuity and 
momentum are then 

aa 
at qR) = O ,  

€a( 1 -a) 
1 -ea v*q = v-  qR. 
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where P is the reduced pressure. A simple law for the relative velocity is assumed 
as given by a modified Stokes settling velocity in a centrifugal force field, 

where f(a) accounts for the small-scale interaction between particles and fluid. 
In  order to study the thin layer of clear fluid that forms adjacent to the conical 

wall during the separation process, we assume that the flow has a boundary-layer 
character for E ,  p, E << 1.  Boundary-layer coordinates x, 0,[, shown in figure 1 are 
defined by 

1 r = x cos y-6[ sin y, 
z = x sin y+65 cos y, 
0 = 0 .  

The corresponding velocity components u, w, w in the (x, 8, [)-directions are 

I u = qr cos y+qz sin y ,  
v = qo, 

-qr sin y+qz cosy 
6 

W =  

In these expressions, 6 is the boundary-layer thickness (which is yet to be determined) 
and y is the inclination angle of the walls. 

If terms negligible in the boundary-layer analysis are discarded, the momentum 

E 
equations are 

x cos2 y +s,uy5, 

1 1  

( 2 . 7 ~ )  

(2.7b) 

( 2 . 7 ~ )  
a,-a E 

x cos y sin y+-wC5; 
1 

*e5 = -psl15-- P 6 

likewise mass conservation is described by 

1 
cos y 

(zu),+-v,g+zw5 = 0. 

Here a new pressure has been introduced 

n = P++,(x cos y-6[ sin y)2; 

ao(t) is the concentration in the interior, a is the actual concentration i.e. a = a, in 
the interior, a = 0 in the purified fluid. 

The magnitude of the velocities and the thickness of the boundary layer are 
estimated by requiring balance in momentum and continuity equations and an O( I )  
net transport in the clear-fluid layer, i.e. US x 1 or v6 x 1.  For s , p ,  E small and 
a = O ( l ) ,  consistent balances in different parameter regimes are found as given in 
table 1. 

In  the parameter range 1, the velocity in the clarified layer is essentially directed 
radially outwards. Since the effects of the Coriolis force are weak, the force balance 
in the clear layer is here similar to that in the non-rotating case (Acrivos & 
Herbolzheimer 1979). In  scaling 2, the Coriolis force begins to be important and 
the velocity profile across the clear-fluid layer is that of two merging layers. The 
direction of the net flux is at  an angle with the radial direction, approaching the 
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U 2) s 
1. E $ P 2  (BE)-; (pEz):  (pE)t  
2. E x P 2  E-1 E-* Ek 
3. max (p, cB2) < E < 182 El$ 1 / P  P 

P 
.IP 1 1/p  l / P  P 

4. E $ > ;  E<ep” 
5. B < P ;  E G b 3  

TABLE 1 .  Magnitude of velocities and boundary-layer thickness for various parameter regimes 

azimuthal direction if E is decreased further (with /3 fixed). In  the ranges 3-5 the main 
force balance is geostrophic and the large buoyant term is balanced by the Coriolis 
force. The flow in the clear boundary layer is essentially in the azimuthal direction. 
(If E is large, the force balance is between inertia, buoyancy and the Coriolis force 
which corresponds to  the rotating version of the layer studied by Schneider (1982). 
This situation is not studied here.) It is of course very difficult in any real experiment 
to conform to the precise asymptotic requirements on the magnitudes of the 
parameters. However, the conditions for figure 2, would apply best to  range 2, but 
possibly to range 5 as well. 

From now on, we shall concentrate on parameter range 2 in which case the 
boundary-layer thickness of the clear-fluid layer is S = &, the same as that of the 
Ekman layers, the concentration within the suspension depends on time only, and 
order-one velocities may be defined by ( U ,  V ,  W )  = a ( u ,  v, w). The motion of the 
interface separating suspension and clarified fluid, 

6 = s(x,  e ,7 )  (2.9) 

with T = E-it, is determined by the movement of the particles on this surface. 
Assuming E ,  < 1, an equation for s(x,  e ,7 )  may be derived as in Appendix A. The 

l a  i a  
ax cosy ae 

result is 
s,+- - (xQ,) +- -Qe = x cosy sin y(1 -a)f(a). (2.10) 

The bulk continuity equation (2.8) has been used here to replace the velocities by 
the non-dimensional fluxes of clear fluid in the x- and 8-directions: 

r s  r s  

(2.11) 

The fast timescale T implies that  changes in the shape of the interface occur much 
more quickly than the overall settling process. As a consequence, the concentration 
ao(t) which varies on the settling timescale is quasi-steady when analysing the motion 
and location of the interface. Likewise the shock that separates the suspension from 
the completely clarified region is steady on the 7-timescale. 

Expressions for the flux functions Q,, Qe are needed to compute s(x, 8 , ~ ) .  They are 
obtained from the momentum equations (2.7) upon neglecting small terms, using the 
resealed variables and setting 

/3 = bl&; 

1 a,,-a 
b b 

-2vcosy=--n,+- x cos2 y +  ucc, ( 2 . 1 2 ~ )  
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1 1  
2ucosy = bxcosy no+ vcp (2.12 b)  

(2.12c) 
1 
b 5' 

The last equation implies that to lowest order, IZ = ninterior = 0. Moreover, since the 
clear-fluid layer is separated from the suspension by a sharp interface 

0 = --n 

a = {O7 5 < s(x,  097) 
a o ,  5 > s(x, 0 , 7 ) .  

Equations (2.12) are exactly those for an Ekman boundary layer. They may be 
solved for U ,  V using boundary conditions U ,  V = 0 at = 0, U ,  V ,  Us, V, continuous 
at  5 = s(x, 0 , 7 )  and U ,  V+O when [+ 00. The velocity profile is that of two merged 
I& layers in the clear fluid, driving one I& layer in the suspension, adjacent to the 
interface. The calculation of the flux functions U ,  V yields 

where 
coshKs I I 

sinh KS + ~ k? I L J I  

(2.13) 

and K = (2i cosy)?, k = pm/pc. 

The ratio k between the viscosities in the purified fluid and the suspension has been 
introduced here for completeness. To keep the analysis as simple as possible, k will 
in the following be taken to be 1, so that f (a) x 1. 

A physical requirement that has to be fulfilled on the barrier and at x = xi, where 
the sediment interface r = s(t) touches the cone, is that there can be no normal flux 
of clear fluid at  these locations. Therefore, Qx = 0 at x = xi and Qs = 0 at the barrier. 
Inspection of the expression (2.14) for G shows that both of these are true only for 
s = 0, which is the only possible value of s on these boundaries. Furthermore, boundary 
conditions for hyperbolic equations such as (2.10) can only be specified on those parts 
of the boundary where the characteristic curves enter the domain. Equation (2.10) 
implies that s increases along characteristic curves. It follows from (2.14) that the 
characteristic velocity, which is zero for s = 0, is directed outwards and towards 
decreasing 0 for small positive values of s. Thus, when s is integrated along a 
characteristic curve, starting on the boundary with s = 0, the curve bends towards 
increasing x and decreasing 8 (opposite to the direction of rotation). Consequently, 
it is proper to apply the boundary condition s = 0 on the inner surface a t  x = xi and 
on half the barrier at 0 = R ,  where such curves will be directed into the domain (see 
figure 4). 

On the boundaries at  6 = 0 and x = xo, where characteristics leave the domain, 
additional analysis is required to explain how the mass balance is maintained. The 
situation is analogous to that common in asymptotic theory, when subcharacteristics 
leave the domain. Additional boundary layers are then required to account for the 
boundary conditions, which in this case are thc Conditions of continuity of mass flux 
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xi = 0.6169 X, = 1.8508 

FIGURE 4. The characteristics of equation (2.10). 

t 

FIGURE 5. Thickness of the clear-fluid layer as function of x at two positions, 0 = in, 0. 

at x = x,, and no net normal flux into the barrier at 8 = 0. The situation is not so 
dramatic a t  x = x,, 8 > 0 where the outer cylindrical shock a t  r = R meets the cone. 
The velocity of this shock is determined in accordance with the mass conservation 
law. However, at 8 = 0, the implication is that a net flux of clear fluid is forced into 
the barrier. Thus an additional layer must be present there in order to transport the 
clear fluid out to the completely clarified region r > R. This layer is discussed in detail 
in the next section. 

As a specific illustration, let y = 1, b = 0.2, a = 0.1, ri = $-+xi = 
r,/cosy = 0.6169, T, = 1 +xo = 1.8508. Since aJt) and R(t) are essentially steady 
on the .r-tirnescale, only the steady case need be examined. To compute s(x,O),  
(2.10) is written in characteristic form and integrated numerically along 
characteristics all of which start on the boundary x = xi or 8 = R. Figure 4 shows 
some characteristic curves which are very much deflected from the radial direction. 
The thickness of the clear-fluid layer along two radii a t  8 = 0, $R is shown in figure 5. 
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The interface is independent of 8 between the inner cylinder and the characteristic 
starting at x = xi, 8 = x .  

3. The corner boundary layer 
As seen in the previous section, a flow of clear fluid is required that is directed 

outwards on the barrier at 8 = 0. For this reason, and on the basis of experimental 
indications, a reasonable hypothesis is that there is a current in a corner boundary 
layer, a region which is small in both the 8- and the [-directions. This jet is of interest 
because i t  may have serious effects on the separation process, perhaps by lessening 
the extent to which the Coriolis force can be counteracted, or by causing instabilities 
which remix the flow. These are as yet unresolved matters. The equations governing 
the motion in this layer will be derived and subsequently solved for an idealized case. 

The new boundary-layer coordinates to be used are x, y, 6, as shown in figure 6 and 
defined by 

at  8 = 0, I r = x cosy-S,csiny, 

z=xsiny+S,[cosy, 

Y =  
2 cosy tan8 

81 

This x-coordinate coincides at 8 = 0 with that used in the previous section. The 
lengthscales S,, S,, as well as the magnitudes of the velocity components remain to 
be determined. 

The boundary-layer scaling of the equations requires a balance in the momentum 
and continuity equations, the [-component of the vorticity equation and an 0(1) 
transport, i.e. US, 8, x 1. Working through the different possibilities, a consistent 
scaling is found to be 

The volume fraction a is represented in the scaling simply to illustrate the effect 
of a varied concentration; a is assumed to be larger than E ,  /3 or Ek The components 
of the velocity vector u, u,  w in the (2, y, [)-directions are made non-dimensional as 
in $2; l7 is the reduced pressure; U ,  V ,  W ,  P are the new scaled O(1)-variables. Note 
that S, < a,, so that the corner region is larger in the [-direction than in the y-direction. 
Also 6, % S, the thickness of the boundary layer on the conical plate. This scaling 

P 
is consistent for 

E < - ,  ~ < m i n  
a 

Expressed in these O( 1)-variables, the lowest-order boundary-layer equations are 

-2vcosy=xcos2y+uyy,  ( 3 . 2 ~ )  

(3 .2b )  

(3 .2~)  

Vy+ wc = 0. (3.2d) 

Note that U does not enter into the continuity equation and as seen from (3.1) u and 
w have the same magnitude. This means that apart from the rapid motion in the 

-2 W sin y+2U cosy = - Py, 
2V sin y = - Pc-x cosy sin y +  Wyu, 
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c 
5 = 2 cos yzmax 

/ 

layer 

FIGURE 6. Definitions of coordinate system and symbols used to study the corner where the 
barrier meets the conical wall. 

x-direction there is also a vortex-like motion in the (y, 3)-plane. Thus a fluid particle 
does not move straight out in the x-direction but is more likely to travel along a spiral 
path. When the mass fluxes are integrated over the cross-section of the pure-fluid 
jet in the corner region, the lowest-order equation is 

I Udydy = F(x) = QS(s(8 = 0,x))dx. I", (3.3) 

The right-hand side is obtained from (2.13). 

the following variables and definitions : 
The pressure can be eliminated and the x-dependence scaled out by introducing 

y = 22 cosy, 

The equations for x, 7 are 

These, except for the term 

r y y - x z  = -cosy, ( 3 . 5 ~ )  

xyyyy +% = 0. (3.5b) 

-cosy, are the usual ,!6 layer equations of rotating-fluid 
theory, see Greenspan (1968). The variable x has disappeared from the equations so 
that the x-dependence of the solution is determined by the mass-balance condition 
(3.3) which is 

2 C O S ~ Y X  s rdydz  = F(x), (3.6) 

where the integration domain is over the cross-section of the jet. 
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The boundary conditions for the system (3.5) imposed at  the solid boundaries are 
chosen to be 

q = x = x y = O  a t y = O ,  (3.7) 

x = O  a tz=O.  (3.8) 

It is assumed that a thinner ,!6 layer on the conical wall at z = 0 takes care of the 
no-slip condition there. Just as in ordinary ,@ layers, the Ekman suction is too weak 
to affect the lowest-order flow. Thus, only the requirement of no normal flow remains, 
x = 0. At y = 0 the conditions are those of no slip and no normal flow. 

The remaining part of the boundary is the (unknown) interface between the clear 
liquid and suspension, 

The height of the corner, zmax(z), in figure 6 is the value for which h(zmax) = 0. 
Equation (3.6) determines the s-dependence of zmax, and thereby the 2-dependence 

The proper boundary conditions to use at  y = h(z) are the continuity of stress and 
velocity across the interface, which implies that P, 7, vY, x, xu, xyy are continuous 
at y = h(z). The requirement that y = h(z) is a streamline provides one additional 
equation that determines h(z) : 

y = h(z). 

of 7, X. 

x = 0 at y = h(z). 

With this set of boundary conditions the flow in the clear corner region will be 
coupled with that in the suspension in the vicinity of the corner. In  order to solve 
(3.5), the flow outside the corner would thus have to be computed too. This is an 
effectively infinite region which makes a numerical solution considerably more 
difficult. An analytical treatment of the flow outside is of course complicated by the 
presence of a curved boundary. 

Our objective at this point is not to determine the details of this flow exactly, but 
rather to make the existence of this corner layer seem probable, as well as the scales 
and magnitude estimates in (3.1). Of course, the qualitative features of the flow in 
this region are of interest. To this end, the problem is simplified by taking the 
boundary conditions at the interface y = h(z) to be 

The first three of these boundary conditions imply that the suspension appears to 
the clear fluid in the corner region like a solid wall. This may be justified if the 
suspension is more viscous than the clear fluid, as is the case for high concentrations. 
If k = ,um/,uuc % 1, it  is possible to derive estimates of the magnitudes of the values 
of the flow variables on the interface which are U x k f ,  V x k-i, W w kf and 
P w k-i. The velocities and also the pressure should then vanish to lowest order on 
the interface. The last of the four conditions (3.9) may be seen from (3.2b) and ( 3 . 2 ~ )  
to be equivalent to P = const on y = h(z). Although the assumption of a very viscous 
suspension may not be particularly good at concentrations of say, 10 % corresponding 
to the experiment, it  should at  least serve as a physically reasonable model problem 
that shows the qualitative features of the corner flow. To make sure that the scaling 
rules in (3.1) are valid, it is also important to check that i t  is indeed possible to solve 
the equations for the corner region. 

We turn now to the solution of (3.5) subject to boundary conditions (3.7)-(3.9). 
The essential simplification introduced by using the boundary condition (3.9) is that 
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the domain becomes finite. The equations (3.5) are linear, but the problem is still 
highly nonlinear because the shape of the interface h(z)  is unknown. Note that (3.7), 
(3.9) provide seven boundary conditions on y = 0,6(z). Given a fixed h(z), six of these 
specify 7, x uniquely and the seventh is used as an equation for h(z). 

An analytical approach is based on a change of variables 

Y = -, f ; =  h(z)  
h ( 4  

and series solutions of the form 
(3.10) 

X(G Y, 2) = XO(P) f;"O+Xl(P) 5"1+ * .  * ,  ( 3 . 1 1 ~ )  

7(%Y,Z) = 70(P)f ;bo+71(PU)f;b l+ . . .~  (3.11b) 

( 3 . 1 1 ~ )  

The last expression is an expansion of z( f ; )  in powers of f ; ,  the inverse of f ;  = h(z). 
These sums are meant to extend over all powers a,, b,, d ,  that are consistent with 
the equations and the boundary conditions. 

The lowest-order equations for x,, 7, are obtained by introducing (3.11) into (3.5), 
collecting terms containing f ;  raised to powers a,, b, or do. Consistency then requires 
that a, = 3, b, = 2, do = 3, in which case the resulting equations for x,, 7, are 

( 3 . 1 2 ~ )  

(3.12 b) 

z = Z,,,+COf;d0+C1f;~1+ ... . 

3c, 7;- 3x0 +lux; = - 3c, cos y, 

3c, yfl + 27, -p7; = 0. 

The corresponding boundary conditions are 

I xo = xi = 7, = 0, 
xr = siny 

a t p  = 0 , i ;  
a t p  = 1. 

(3.13) 

Six of the seven boundary conditions a t  p = 0 , l  are needed to determine to, 7, as 
functions of p and C,; the seventh condition is used to find the value of C,. The 
differential equations are regular and may thus be solved by a power series expansion 

7 0  = E b,Pn, x o  = E CnPn.  

The results of inserting these sums in the equations and working out the first powers 
are 

' lo(P) = f c o s Y P ( ~ - P ) + o ( P 4 ~ ~  ( 3 . 1 4 ~ )  

(3.14 b) 

( 3 . 1 4 ~ )  

The corresponding expressions for 7,  x, h as functions of y, z are 

cosy 
240 x = --h'y"2h3-3h2y+y3), (3.15b) 

h = (y tan y(zmaX-z))i. (3.15 c) 

These expressions satisfy (3.5) approximately and the boundary conditions on y = 0 
and a t  y = h(z). Figure 7 ( a )  shows level curves of x according to  (3.15). Obviously, 
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FIQURE 7. (a)  Streamlines according to the approximation solution (3.15). The stream function x 
is 0 at the wall and the clear-suspension interface. On the streamlines, it has the values 
x = 0.01,0.02, . . . ,0.08. ( b )  Numerically computed streamlines. The stream function x has the values 
x = 0, 0.01,0.02,0.03 on the streamlines. It is 0 at the walls and on the clear-suspension interface. 

the condition x = 0 on z = 0 is violated but, as will be seen later, these expressions 
are fair approximations of the solution away from the lower boundary. The boundary 
condition at z = 0 can be met by calculating the higher-power terms containing qk, X k  
in (3.11) and the details of this analysis are given in Appendix B. 

The problem was also solved by a direct numerical method. The system (3.5) was 
discretized using second-order-accurate finite differences and the solution was 
computed iteratively in two steps: 

(i) the linear problem is solved, using h(z) from the last iteration, without imposing 
the boundary condition xvvv = sin y at y = h(z) ; 

4 F L Y  181 
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FIGURE 8. Level curves of 7, the velocity in the 2-direction. q is 0 on the wall and the clear-suspension 
interface. On the level curves it has the value q = 0.15,0.30,0.45. 

(ii) h(z) is corrected so that the error in x,,, = siny is decreased along y = h(z). 
The expressions (3.15) are used as initial approximations and the iteration is 

continued until the absolute value of x,,, - sin y decreases by four or five orders of 
magnitude along the curved boundary. Step (ii) is executed with an  approximate 
Newton-Raphson method; the correction dhj to hj, the value of h(z) at thej th  point 
z = z j ,  is solved from the linear set of equations 

(3.16) 

where c (h j )  = xyv,(zi,y = hj)-siny. 

Here the left-hand side is the current numerically computed value of F = x,,,-sin y, 
while the gradients in the right-hand side are calculated from the current values of 
hi using (3.15). 

Figure 7 ( b )  shows streamlines in a (y, %)-plane for the numerically computed x, for 
the parameter values y = 1 and z,,, = 1 .  A comparison with the approximate 
solution figure 7 (a)  shows that the two are in fair agreement away from the z = 0 
boundary, a t  least for z > 0.5. Level curves for 7, shown in figure 8 indicate 7 is 
approximately a parabolic function of y a t  all z-values. The interfaces in figure 7 
coincide with the streamline x = 0;  a comparison of the two, figure 9, shows that the 
difference is fairly small, even near x = 0. The numerically computed interface which 
is slightly flatter than the analytical approximation does not seem to have the exact 
similarity shape (z,,, - z)!, since it changes curvature and bends outwards near 
z = 0. Higher-order terms may rectify the discrepancy. 

Finally the flow in the corner is matched to  the solution on the conical plate. This 
is done by calculating the volume flux F ( x )  of clear Auid required in the corner to  
take care of the inflow from the boundary layer on the conical wall as expressed by 
(3.3). The right-hand side of (3.3) was computed from the data presented in figure 5 
and the non-dimensional flux F(x) obtained in this way is shown in figure lO(a). The 
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FIGURE 9. Comparison of the numerical and analytical solutions for the clear-suspension 
interface, y = h(t;). 
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FIGURE 10. (a) The non-dimensional flux of clear fluid F ( r )  that is required in the corner layer. ( b )  
The non-dimensional height zmaX of the clear corner jet as a function of x. 
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integral on the left-hand side of (3.6) determines zmax(z). The analysis of the corner 
boundary layer in 93 assumes that k = pm/pc B 1 while, in the calculations leading 
to figure 10(a), k was taken equal to one. However the corner layer was also analysed 
for the case k 4 1 .  It was found that, for the same value of zmax, the flux carried by 
the corner layer was almost the same in the two cases, about 7 Yo less in the k 4 1 
case than in the k %- 1. It thus seems reasonable to assume that the dependence of 
the flux on k is weak and, in order to determine the x-dependence of zmax, the solution 
in 93 and figure 10 (a) may be used. The result is shown in figure 10 (b). Since 'I,& h 
depend on z only through their dependence on zmax(z), they are now completely 
specified. 

4. Conclusions 
A method for enhancing centrifugal separation by a modification of centrifuge 

geometry was examined by Greenspan & Ungarish (19853). They showed that, unlike 
gravitational settlers, widely spaced, inclined end caps in a rotating cylindrical 
container do not increase separative performances unless the swirling motion is 
blocked by a meridional barrier. In this way the Coriolis force can be counteracted, 
as it is by viscous shear in the conventional arrangement of a closely spaced disk 
stack. A qualitative experiment reported here was in reasonable agreement with the 
theory. No Boycott effect was observed in the completely axisymmetric container 
with one flat and one conical end plate in that there were no thin clarified boundary 
layers on the inclined lid. However, with the insertion of the meridional barrier, the 
flow was radically altered and a boundary-layer flow, similar to that in non-rotating 
inclined settling, was then observed. 

The scales relevant for the clarified boundary layer on the inclined lid and an 
equation for the thickness of the clear fluid layer were derived. The shape of the clear 
fluid-suspension interface which is quasi-steady on the settling timescale was 
computed for a special case. There is a considerable azimuthal flux in this boundary 
layer, driven via the Coriolis acceleration by the large radial buoyant force in the 
clarified layer. 

This azimuthal flow implies that a corner layer is required where the meridional 
barrier and the conical end plate meet in order to transport the clear fluid in the main 
boundary layer out along the section to the completely clarified region. The corner 
current appears only on the front side of the barrier, i.e. that side which corresponds 
to an increasing azimuthal angle. On entering the boundary layer, the angular 
momentum of an element of purified fluid decreases so that it acquires a retrograde 
azimuthal velocity relative to the container. Upon meeting the barrier, the azimuthal 
motion of the fluid is effectively stopped and the bouyancy force throws it radially 
outwards into the region of purified liquid T > R(t).  There buoyancy forces are absent 
and a more conventional rotating source-sink flow redistributes the fluid so that 
overall mass balance is maintained. 

The problem for the flow in the corner is fully nonlinear since the shape of the 
boundary between clarified fluid and suspension is unknown. It was solved in a 
slightly idealized case and the structure of the corner jet determined both analytically 
and numerically. Experimental work to verify results is contemplated. 

We are grateful to Professor Fritz Bark and Dr Marius Ungarish for valuable 
comments and criticism. This research was partially supported by the National 
Science Foundation, Grant Number MCS-8213987. 
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Appendix A 
The position of the interface between clear fluid and suspension is denoted by 

5 = +, e, 7 ) .  (A 1) 
The coordinates x, 8, c are defined in (2.5) ; 7 is a fast time variable defined by 
7 = E-it. If (A 1) is differentiated with respect to t we obtain 

Since the motion of the interface is determined by the motion of the particles located 
on the interface, dx/dt, rde/dt and dC/dt may now be identified with the velocities 
of the dispersed particles on the interface, uD, vD and wD. Furthermore, the particle 
velocities are related to the bulk velocities u, v, w by 

Using this, the definition of qR in (2.4), and the variable transformation (2.6), the 
particle velocities may be written as 

- u- (1 -a)f(a) x cos2 y ,  
dx 
dt UD=-- I 

The assumption e 4 1 has been used, and small terms have been neglected. The 
introduction of (A 3) into (A 2) yields 

as as as v 
a7 ax ae r E-t(l -a)f(a) x siny cosy = E d - + -  (u- (1 -a)f(a)x cos2y) +---w. 

Since the velocities u,v, w are to be evaluated at the interface = 8(x, e,7), the 
continuity equation (2.8) allows some of the terms on the right-hand side of (A 4) 
to be rewritten as 

The substitution of this expression into (A 4), with non-dimensional fluxes defined 
by 

Q5 = ,@ s' udg, Qe = ,@ s' vdg. (A 6) 
0 0 

yields, upon neglecting low-order terms, 

as 1 a i a  
a7 xax cos y ae -+--(xQz)+--Qo = (1-a)f(a)xsiny cosy. 

This is the result cited in (2.10). 
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Appendix B 
To obtain the higher-order terms of the series solution to (3.5) as formulated in 

(3.10), (3.11) et seq., the expansions are substituted into these equations and terms 
containing 6 raised to powers containing exactly one of a, b ,  or d ,  are collected. To 
obtain the next-order equations, (3.11) is inserted into (3.5) and terms containing 6 
raised to powers containing exactly one of a,, b, or d ,  are collected. Consistency now 
requires that all these powers are in fact the same. It follows that 

b, = ~ ~ - 1 ,  d ,  = a,, 

but a, is not determined. The system of equations for q,, x, ,  C, and a,  is 

3co qr-a, +p& = -c, a,( cos y + 7;)) (B 1) 

3c, x;"'+ (a, - 1) q, -pq; = - c, a, x: 
into boundary conditions 

1 x 1 1 1  = x ' = q  = O  a t p = O , l ,  

X T = O  a t p = 1 .  j 
Note that the right-hand sides of (B 1) and (B 2) are both proportional to C, and that 
the boundary conditions (B 3) are homogeneous. Thus q,, 2, are also proportional to 
C, and the value of C, cannot be determined by one of the boundary conditions in 
the way that C, was. In fact C, is easily scaled out from the equations. Instead the 
value of the exponent a, which is independent of C, is obtained from applying the 
last of the boundary conditions (B 3). Thus the solution is completely specified 
to this order, except for the constant C,. The consistency of the scheme requires that 
the powers in the sums (3.11) are indeed increasing, and specifically that a, > a, = 3. 
Equations (B 1) and (B 2) were solved approximately by the method leading to (3.14) 
and, by using slightly more accurate forms of yo, q1 and x,, x , ,  the value of a, was 
determined to be 9.0589 for a case with y = 1. 

In this manner, the development (3.11) to higher powers should yield a series 
solutions for x as 

where xk = C, X k .  The coefficients C, can then be determined to satisfy the remaining 
boundary conditions, x = 0 at z = 0. 
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